_	•						
1		28 72	P1	for $\frac{6}{8}$ or $\frac{7}{8}$ or $\frac{7}{8}$ or $\frac{1}{8}$ oe seen on diagram or in a calculation			
			P1	for $\frac{7}{9} \times \frac{2}{8}$ or $\frac{2}{9} \times \frac{7}{8}$ or $\frac{14}{72}$ oe for $\frac{7}{9} \times \frac{6}{8}$ or $\frac{2}{9} \times \frac{1}{8}$ or $\frac{42}{72}$ or $\frac{2}{72}$ or $\frac{44}{72}$ oe			
				for $\frac{7}{9} \times \frac{2}{8} + \frac{2}{9} \times \frac{7}{8}$ for $1 - (\frac{7}{9} \times \frac{6}{8} + \frac{2}{9} \times \frac{1}{8})$ or $1 - (\frac{42}{72} + \frac{2}{72})$			
				or " $\frac{14}{72}$ " + " $\frac{14}{72}$ " oe or 1 - " $\frac{44}{72}$ " oe			
			A1	oe SC B1 for $\frac{14}{81}$ B2 for $\frac{28}{81}$			
		-					
2		98	P1 P1 A1	find P(1 or 3), eg. $1-0.17-0.09-0.15-0.1$ (= 0.49) for process to find the number of 3s eg. 0.18×200 (=36) or process to find the number of 1s, e.g. P(1) × 200 (= 62), or process to find the number of (1 or 3)s, eg [P(1) + 0.18] × 200 or for process to find any expected frequency using any probability × 200 eg. 0.17×200			
				OR			
			P1 P1 A1	for process to find the number of (2 or 4 or 5 or 6)s, eg. "0.51" × 200 (= 102)			
3		1	P	1 for starting the process, eg by writing down a correct ratio or using a given number of			
3		11		cubes for one relationship, eg 2B 1Y or B:Y = $2:1$ or 4G 1B or G:B = $4:1$ or 8G, 1Y or G:Y = $8:1$ oe			
				or yellow = 2, blue = 4, or states 2:1:8 oe in any order (can be algebraic)			
			P	for complete process to find possible number of each colour or equivalent ratio, eg 8G 2B 1Y or G:B:Y = 8:2:1 oe or yellow = 2, blue = 4, green = 16 oe (can be algebraic)			
			A	A1 $\frac{1}{11}$ oe			
	-		-				
4 ^(a)	-	1 55	M	$ for \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} $			
			A				
(b)		Conclusion (supported)	C	starts correct argument, eg by calculating a relevant probability, eg $\frac{5}{15} \times \frac{4}{14} \times \frac{3}{13}$			
			c	c1 statement of "more likely" from eg comparison of probabilities, ft answer to (a) eg $\frac{1}{55}$ (= 0.018) and $\frac{2}{91}$ (= 0.021or 0.022)			
5 (a)	N	Mel (supported)	B1	Mel with reference to greatest number of throws			
(b)		$\frac{2}{9}$	M1	selects overall total and multiplies P(point up)×P(point down) eg $\frac{50}{150} \times \frac{100}{150}$ oe (accept $\frac{14}{45} \times \frac{31}{45}$ or $\frac{27}{80} \times \frac{53}{80}$ or $\frac{9}{25} \times \frac{16}{25}$)			
			A1	for $\frac{2}{9}$ oe			
-							

6 ^(a)	0.05	B1	for 0.05 oe
(b)	20	C1	for stating that at least 20 required
	Reason	C1	for reason eg explains that number of each colour must be a whole number or that there must be (at least) 1 red counter or shows that $0.05 = \frac{1}{20}$

full process to find the required probability $eg \ 3 \times "0.04" \ or \ \frac{3}{20} \times (1-0.2) \ oe \ or \ 3 \div "25" \ or \ 3 \times "4" \div 100$	not sufficient for P1	Just $1 - 0.2 = 0.8$ is not sufficient	2 P1	,
or 3×4 (= 12) and 17×4 (= 68) May be seen in a ratio full process to find the required probability eg $3 \times \text{``0.04''}$ or $\frac{3}{20} \times (1 - 0.2)$ oe or $3 \div \text{``25''}$ or $3 \times \text{``4''} \div 100$				
full process to find the required probability eg $3 \times \text{``0.04''}$ or $\frac{3}{20} \times (1 - 0.2)$ oe or $3 \div \text{``25''}$ or $3 \times \text{``4''} \div 100$				
eg 3 × "0.04" or $\frac{3}{20}$ × (1 – 0.2) oe or 3 ÷ "25" or 3 × "4" ÷ 100	D	May be seen in a ratio		
20			P1	
A1 oe 0.12 using incorrect p				
gets P2	probability notation	0.12 using incorrect probability no gets P2	A1	

8 ^(a)	8	P1	for process to find sum of unknown probabilities, eg $1-0.45-0.25 (= 0.3)$ OR to find the total number of counters in the bag, eg $\frac{18}{0.45} (= 40)$ OR to find the number of yellow counters, eg $\frac{0.25}{0.45} \times 18 (= 10)$	Award mark for any two probabilities given that sum to 0.3 eg given in the table.
		P1	for process to find P(red) = 0.2 oe or P(white) = 0.1 oe	Award P2 for P(red) or P(white) (could be shown in table)
			OR for process to find the total number of red and white counters, eg "40" – 18 – "10" (=12)	Equations could be given as written
			OR for process to derive an equation in x, eg $2x + x = 1 - 0.45 - 0.25$ or $2x + x = "0.3"$ or $x = 0.1$	statements or working but must be fully equivalent.
		P1	for a complete process to find the number of red counters, eg $\frac{2 \times 0.1}{0.45} \times 18$ or $\frac{2}{3} \times "12"$ or $0.2 \times "40"$ or $\frac{0.2}{0.025}$	
		A1	cao	
(b)	Explanation	C1	for explanation eg 0.5 multiplied by an odd number will never be a whole number, for half of a number to be an integer that number must be even, you can't have half a marble	

9	(a)	0.4, 0.4	P1	for process to find sum of unknown probabilities, eg 1 – 0.2 (= 0.8)	Award mark for any two probabilities given that sum to 0.8, eg given in the table
			A1	oe	Accept any equivalent fraction or 40%
	(b)	60	P1	for complete process to find total number of cubes, eg 12 ÷ 0.2 or 12 × 5 or ("0.4" ÷ 0.2) ×12 + ("0.4" ÷ 0.2) ×12 + 12	
				OR states 0.1 = 6 or 0.4 = 24	
			A1	cao	

10	(i)	65	M1	for working with proportion eg 10 ÷ 30 × 195 (=65)	Condone use of 200 for 195
			A1	cao	
	(ii)	statement	C1	for statement	
				Acceptable examples sample is representative (otherwise answer wrong) random sample (otherwise answer will be different) the 30 students are from the 195 (otherwise not accurate) 10 out of every 30 want to go to the Theme Park (otherwise answer will be different/wrong) there is no bias Not acceptable examples There would be more than 10 people who want to go to the Theme Park I rounded my answer	

11	72	M1	for $\frac{5}{30} = \frac{12}{p}$ oe, eg $\frac{12}{p} \times 30 = 5$ or $12 + \frac{5}{30}$ or $5:30 = 12:p$ or 1 in $6:(30+5)$ counters are yellow, so $12 \times \text{``6''}$ or using equivalent ratios to $5:30$, eg. $2:12$ and $10:60$ and adding to give $2+10:12+60$ cao		
12	52 72 P1	for $\frac{4}{9}$: for 1 - for $\frac{52}{72}$	$\frac{3}{8} \left(\frac{12}{72} \right) \text{ or } \frac{4}{9} \times \frac{5}{8} \text{ or } \frac{5}{9} \times \frac{4}{8} \left(\frac{20}{72} \right)$ $- \left(\frac{5}{9} \times \frac{4}{8} \right) \text{ or } \frac{4}{9} \times \frac{3}{8} + \frac{4}{9} \times \frac{5}{8} + \frac{5}{9} \times \frac{4}{8} \text{ oe}$ $\frac{2}{7} \cdot \frac{13}{18} \text{ oe}$ for answer of $\frac{56}{81}$ (replacement)		pept equivalent fractions, decimals (0.72) percentages (72.22%)
13	81		finding the probability of heads $eg^4\sqrt{\frac{16}{81}} (=\frac{2}{3})$ for finding the probability of tails $1-\frac{4}{\sqrt{\frac{16}{81}}} (=\frac{1}{3})$	Seeing : mark	a probability of $\frac{2}{3}$ or $\frac{1}{3}$ is enough for this
14		eg 0.3	propriate multiplication 3×0.7 (=0.21) or 0.3×0.1 (=0.03) or 0.3×0.6 (=0.18) for complete process $3 \times 0.7 + 0.7 \times 0.3$ or $0.3 \times 0.1 + 0.3 \times 0.6 + 0.6 \times 0.3 + 0.1 \times 0.3$		Probabilities could also be given in fraction or percentage form
15	180 336	P1 for a eg 3/8 A1 oe, e	$\frac{3}{7}$ or $\frac{4}{7}$ or $\frac{5}{7}$ as probability for second counter one correct product $\frac{3}{8} \times \frac{5}{7} \times \frac{4}{6} = \frac{60}{336}$ or $\frac{5}{8} \times \frac{3}{7} \times \frac{4}{6} = \frac{60}{336}$ or $\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} = \frac{60}{336}$) complete process $\frac{1}{8} \times \frac{5}{7} \times \frac{4}{6} + \frac{5}{8} \times \frac{3}{7} \times \frac{4}{6} + \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6}$ $\frac{15}{28}$ 31 for answer of $\frac{225}{512}$ (replacement)	Accordecide decided and decide	ept equivalent fractions, mals (0.53 or 0.54) or ventages (53% or 54%)
16	:	eg. 0.7 or 0.3 P1 for pro Wedne or 0.7 or 0.3 or 0.3	rocess to find a correct probability product for 2 consecutive days, \times 0.8 (rain M + T) or 0.7 × 0.2 (rain M + no rain T) × 0.6 (no rain M + rain on T) or 0.3 × 0.4 (no rain M + T) occess to find a correct triple probability product for it raining on esday, eg. 0.7 × 0.8 × 0.8 (rain M + T + W) (= 0.448 or $\frac{56}{125}$ oe) × 0.2 × 0.6 (rain M + no rain T + rain W) (= 0.084 or $\frac{56}{125}$ oe) × 0.6 × 0.8 (no rain M + rain T + rain W) (= 0.144 or $\frac{18}{125}$ oe) × 0.4 × 0.6 (no rain M + no rain T + rain W) (= 0.072 or $\frac{9}{125}$ oe) mplete process, eg. "0.448" + "0.084" + "0.144" + "0.072" $\frac{187}{250}$	fracti Could	ughout accept probabilities given as ons or percentages d be for Tuesday and Wednesday also correct answer without supportive working marks

17	(a)	0.5, 0.3	P1	for 1 – 0.05 – 0.15 (= 0.8)	Award this mark for any two probabilities that sum to 0.8	
			A1	oe		
	(b)	120	M1	$18 \div 0.15$ oe or $6 + 18 + a + b$ where $a + b = 96$		
	A1		A1	cao		
18		$1 - \left(\frac{1}{2}\right)^n - \left(\frac{1}{2}\right)^n$		for $\left(\frac{1}{2}\right)^n$ oe		
			A1	oe eg $1 - \left(\frac{1}{2}\right)^{n-1}$		